Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Debugging process plays a crucial role in helping students pinpoint their specific learning weaknesses, allowing them to modify their strategies for enhanced academic performance. Notably, changes in pupil dilation serve as an indicator of arousal associated with confronting learning challenges. This physiological response acts as a “physiological footprint” that reflects cognitive engagement, facilitating internally focused cognitive processes such as insight generation and mind-wandering. In this study, we proposed that pupil dilation could be a valuable predictor of students’ metacognitive awareness throughout the debugging process, specifically within an augmented reality (AR) learning environment. The findings revealed significant differences in pupil dilation among students categorized by their varying levels of debugging, which represents a specific dimension of the Metacognitive Awareness Inventory.more » « lessFree, publicly-accessible full text available October 15, 2026
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Abstract Reconstructing past oxygen fluctuations in oxygen minimum zones (OMZs) is crucial for understanding their response to climate change. Numerous studies suggest better oxygenation in the Arabian Sea OMZ during the Last Glacial Maximum (LGM) compared to the Holocene. However, bottom water oxygen (BWO) variability during the Penultimate Glacial Cycle (Marine Isotope Stage [MIS] 6 to MIS 5e, ∼140–115 ka B.P.) remains poorly constrained. This study reconstructs BWO variations during this period from sediment core TN041‐8JPC in the western Arabian Sea OMZ, utilizing proxies including benthic foraminiferal surface porosity, redox‐sensitive trace metal enrichment factors (e.g., UEF), and U/Ba ratios. Bottom water oxygen concentrations were 24.4 ± 5.9 μmol/kg during MIS 6 and 16.8 ± 6.5 μmol/kg during MIS 5e, with all proxies indicating higher BWO in MIS 6 than in MIS 5e. However, these proxies show different patterns within MIS 5e, indicating that UEFand U/Ba ratios may be limited to recording average BWO in glacial and interglacial (quasi)steady states. We propose that the intensified OMZ during MIS 5e, relative to MIS 6, was driven by higher productivity, temperature‐induced reductions in oxygen solubility, and reduced delivery of Southern‐sourced intermediate waters. In contrast, the intensified OMZ during the Holocene, compared to the LGM, was likely influenced by lower oxygen solubility, reduced Southern water delivery, and winter convective mixing rather than productivity. This study highlights a general trend of weaker OMZs in glacial than interglacial periods, though the mechanisms may not be identical, offering insights into OMZ dynamics under climate change in the past.more » « lessFree, publicly-accessible full text available June 1, 2026
- 
            Free, publicly-accessible full text available July 16, 2026
- 
            Free, publicly-accessible full text available July 1, 2026
- 
            Superlattices of polyhedral nanocrystals exhibit emergent properties defined by their structural arrangements, but native nanocrystal ligands often limit their programmability. Polymeric ligands address this limitation by enabling tunable nanocrystal softness through modifications of polymer molecular weight and grafting density. Here, we investigate phase transitions in polymer-grafted nanooctahedra by varying polymer length, nanocrystal size, truncation, and ligand density. In two-dimensional superlattices, longer polymers or smaller nanooctahedra induce a transition from orientationally ordered to hexagonal rotator lattices. In three-dimensional superlattices, increasing polymer length drives transitions from Minkowski to body-centered cubic and plastic hexagonal close-packed phases, while higher grafting densities further enable transitions to simple hexagonal phases. Polymer brush and thermodynamic perturbation theories, supported by Monte Carlo simulations, uncover the entropic and enthalpic forces that govern these transitions. This work highlights the versatility of polymer-grafted anisotropic nanocrystals as building blocks for designing hierarchical superstructures and metamaterials with customizable properties.more » « lessFree, publicly-accessible full text available July 18, 2026
- 
            Abstract In all three domains of life, genes with related functions can be organized into specific genomic regions known as gene clusters. In eukaryotes, histone, piRNA (Piwi-interacting RNA), and rDNA (ribosomal DNA) clusters are among the most notable clusters which play fundamental roles in chromatin formation, genome integrity, and translation, respectively. These clusters have long been thought to be regulated by distinct transcriptional mechanisms. In this study, using Caenorhabditis elegans as a model system we identify ATTF-6, a member of the AT-hook family, as a key factor for the expression of histone, piRNA, and 5S rDNA-SL1 (spliced leader 1) clusters. ATTF-6 is essential for C. elegans viability. It forms distinct nuclear foci at both piRNA and 5S rDNA-SL1 clusters. Loss of ATTF-6 leads to a depletion of histone mRNAs, SL1 transcripts, and piRNAs. Additionally, we demonstrate that ATTF-6 is required for the recruitment of USTC (Upstream Sequence Transcription Complex) to piRNA clusters, which is necessary for piRNA production. Collectively, our findings reveal a unifying role for an AT-hook transcription factor in promoting the expression of fundamental gene clusters.more » « less
- 
            Free, publicly-accessible full text available October 3, 2026
- 
            Free, publicly-accessible full text available June 3, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
